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Figure 1: Three conditions of movement applied in the user study. We proposed a model designed to detect backward movement.

ABSTRACT

Movement is one of the key elements in virtual reality (VR) and
significantly influences user experience. In particular, walking-in-
place is a method of supporting movement in a limited space, and
many studies are being conducted on its effective support. However,
most studies have focused on forward movement despite many sit-
uations in which backward movement is needed. In this paper, we
present the development of a prediction model for forward/backward
movement while considering a user’s orientation and the verifica-
tion of the model’s effectiveness. We built a deep learning-based
model by collecting sensor data on the movement of the user’s head,
waist, and feet. We developed three realistic VR scenarios that in-
volve backward movement, set three conditions (controller-based,
treadmill-based, and model-based) for movement, and evaluated
user experience in each condition through a study of 36 participants.
As a result, the model-based condition showed the highest sensory
sensitivity, effectiveness, and satisfaction and similar cognitive bur-
den compared with the other two conditions. The results of our study
demonstrated that movement support through modeling is possible,
suggesting its potential for use in many VR applications.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—; Human-centered computing—Virtual reality—;
Computing methodologies—Machine learning approaches—

1 INTRODUCTION

Virtual reality (VR) aims to provide immersive experiences to its
users [50]. VR research has focused on creating realistic graphics or
movements, improving user and environment interactions, experi-
menting with controllers that have a higher degree of freedom in a
variety of situations [2, 51, 53, 67–69], and enhancing sensory sup-
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port through additional sensor devices [4, 7, 10, 16, 52, 65]. Among
the factors that influence immersive experiences, movement is a
fundamental element that allows users to navigate and interact with
the VR environment [11, 14, 24, 37, 42, 54]. Users generally ex-
pect to move analogously to what they do in the real world, and
if their movement does not synchronize and map properly in VR,
their user experience decreases significantly (e.g., they could feel
dizzy or experience cybersickness). Research on movement in VR
is largely categorized into full gait (real walking), partial gait (step-
ping in place without making any physical displacements), and gait
negation (using treadmill or step-based devices). Walking-in-place
(WIP) is a partial gait technique in which a user navigates a virtual
space using leg motions while remaining stationary [59]. It has been
adopted in many VR systems because the VR environment typically
covers a virtual area that is much larger than what can be reasonably
tracked by the limited corresponding physical space.

Despite much research on VR locomotion, studies have mostly
focused on forward movement, and little focus has been placed
on backward movement. According to a survey paper [1], only
20% of studies have focused on backward movement. Backward
movement is a basic movement expected by the user, and many
VR scenarios require it. Examples include when an object that a
user wants to pick up is located too close to the user, when the
user suddenly encounters a wall or a person while walking, and
when the user makes a mistake in movement. Regardless of the user
intention, he or she needs to be able to move backward. When the
user wants to take a few steps back but is not able to, cybersickness
is highly likely to occur. Supporting backward movement increases
the freedom and flexibility of user control and navigation in a VR
environment, and this is essential for an immersive and realistic VR
experience. If these basic elements are not properly supported, the
overall user experience will likely be diminished [49]. Research
also highlights a strong relationship between movement and VR
sickness [62]. In addition, the aforementioned 20% of prior studies
have investigated backward movement using classic input devices
(e.g., gamepads, mouse devices) [35] and gesture- and motion-based
input (e.g., finger or body motions) [25, 35]. Backward movement
with actual footsteps provides a more immersive VR experience than
these earlier methods, but this has not been systematically explored
in research.



To address this research gap, this paper introduces the results of
two user studies on backward movement. The first user study in-
volved the development of a backward movement prediction model
based on sensor data. We considered three sensor data sources (i.e.,
head, waist, and foot movements) and collected the corresponding
sensor data from 20 participants. We developed forward/backward
movement prediction models using deep learning from the collected
sensor data. The study results confirmed that a deep learning-based,
individualized model yielded the best performance (96% F1-score).
The second user study involved the verification of model effective-
ness through case studies. We designed three scenarios (elevator,
library, and bus) that each included three moments that required back-
ward movement. Through the evaluation of user experiences in these
different scenarios, we attempted to increase the comprehensive-
ness of our study results. We applied three movement modalities:
standard VR controller, gait negation (i.e., treadmill-based), and
model-based WIP (i.e., supported by our custom head, waist, and
foot sensors and deep learning prediction model). We conducted a
user study with 36 participants. The results indicated that the model-
based condition showed the highest sensory sensitivity, effectiveness,
and satisfaction and exhibited a similar level of cognitive load on
the users, compared with other conditions.

Our study results complement and expand existing VR locomo-
tion research by presenting new methods, results, and insights on
supporting naturalistic backward movement in VR. Our research
also contributes not only to the application of artificial intelligence
technology to VR but also to the demonstration of its effectiveness
in VR scenarios. Our study methods and results can be applied to
other VR systems that involve backward movement.

2 RELATED WORK

2.1 Supporting immersive experience in VR

Many studies have been conducted on providing an immersive ex-
perience in a VR environment. Here, we briefly summarize VR
research that improves immersive experiences by providing environ-
mental realism, naturalistic input, multi-user support, and movement
tracking. For environmental realism, increasing the sense of real-
ity can be achieved by creating an environment similar to a real
one [13, 31, 33, 40, 61]. A realistic VR controller that simulate real
tools can support realistic movement by allowing the users to directly
interact with the VR environment through the user’s hand [68, 69].
Computer vision technology has also been adopted to provide users
with realistic experiences without a physical controller [5].

VR research has also focused on supporting multiple users [13].
Many collaborative scenarios require interactions from two or more
agents. For example, social VR allows people to establish and
maintain social relationships in an online space and to work together
through collaboration. Several social VR applications, such as Rec
Room 1, BigScreen 2, and VRChat 3, have all seen an increase in
traffic. Also, through team-level VR training, users can learn how to
cope with situations through collaboration required in actual training
and to gain training experience [19]. Lastly, which is a focus of our
study, the ability to track movement gives a strong sense of reality
by making it possible to move in a VR environment analogous to
movement in reality. We discuss the details of each locomotion
technique in the following section.

2.2 Locomotion research in VR

Research on VR locomotion can be broadly classified into
the walking-, steering-, selection-, and manipulation-based tech-
niques [1,32,38]. Among them, the walking-based technique, which

1https://recroom.com/
2https://www.bigscreenvr.com/
3https://hello.vrchat.com/

includes movements based on full gait, partial gait, and gait negation,
has been extensively studied.

Full gait techniques include real walking, which considers the
walking space in the real and virtual environments to be the same.
With the full gait technique, the movement reflected when a user
explores the virtual space is the same movement as walking in the
real world. However, due to the nature of the infinite VR space,
making the size of the real space and the VR space exactly the same
is one of the biggest challenges and often times impossible to be
realized [38].

To overcome these limitations, the redirected walk (RDW)
method was proposed [46]. It enables actual walking in a lim-
ited space by visually manipulating the user’s virtual environ-
ment and calculating gait movement to avoid collision in a limited
space [18, 28, 63]. RDW can be one of the most complete VR lo-
comotion methods if it is applied correctly in practice, but also has
limitations. Sometimes RDW requires high gains of rotations and
repositions that causes VR sicknesses [23].

Partial gait techniques support movement through steps in a fixed
posture. WIP is a partial gait technique that detects the time when
the movement occurs through data collected from the movement
of the leg or body and moves the user in the direction of the head-
mounted display (HMD). WIP is the most representative method
when taking an action to move the foot in a stationary state. It is a
convenient and inexpensive technique [21] to provide some of the
proprioceptive feedback inherent in real walking [1, 43]. However,
several evaluations of WIP techniques have indicated less naturalness
of WIP, compared with natural walking [1].

Research has also been conducted to detect the start of move-
ment through a pressure sensor from a stepping platform [8]. Gait
negation techniques refer to supporting a full gait cycle while a
person is stationary and equipment for measuring steps or wiping
gestures or a treadmill is required [1]. All of these methods depend
heavily on dedicated mechanical devices, which include treadmills,
step-based devices, and low friction surfaces [38]. There are two
types of treadmills: active and passive repositioning [43]. The
active repositioning method relies on elaborate mechanical setups
like the traditional linear treadmill, which supports only forward
movement [20, 34, 44]. In the case of the active repositioning om-
nidirectional treadmill [17, 29, 55], there are potential limitations
that may cause the user to lose his or her balance during turns, and
sidesteps problems may occur [38]. Passive repositioning treadmills
provide movement in a friction-free manner [3, 12, 58] (e.g., KAT
Walk 4, Cyberith Virtualizer Elite 5, Virtuix Omni 6). Moreover,
research has attempted to compare locomotion methods through user
experience perspectives. Traditional (e.g., teleport, joystick) and
newly proposed methods (e.g., WIP, body motion, virtual sphere)
were compared with several user experience elements including per-
ceived presence, usability, and sickness [9, 11, 39]. In this paper, we
considered backward movement and present a study of comparing
user experience in controller-based, treadmill-based, and WIP-based
movement.

2.3 Learning and predicting movement in VR
Considering people’s different gait patterns, research has employed
machine/deep learning techniques to model one’s movement based
on sensor data from VR devices. Examples include using a feed-
forward neural network to extract patterns from the position sensor
data of the HMD [54], developing a neural network to classify walk-
ing and flying patterns in WIP [60], using the same neural network
using head sensor data to determine when the participant was walk-
ing [47]. Some studies used a Convolutional Neural Network (CNN)
algorithm to reliably recognize human’s physical activities [66] or

4https://www.kat-vr.com/
5https://www.cyberith.com/virtualizer-elite/
6https://www.virtuix.com/
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Figure 2: The study procedure. In user study #1, we developed the model that detects forward/backward movements, and in user study #2, we
applied the model to three scenarios that require forward/backward movements in a natural fashion. We verified the effectiveness of our model
application in terms of perceived presence, cognitive load, effectiveness, and satisfaction.

Figure 3: Data collection in Study #1. By pressing the trigger button
on the controller, the participants were instructed to move forward,
and by releasing the button, the participants were instructed to move
backward. The participant moved forward and backward for 10 sec-
onds each, and this was repeated six times (a total of 120 seconds).
Data from the sensors of HMD, waist, and feet were collected.

to improve WIP using sensor data from HMD [26]. Furthermore,
attempts have been made to promote user experience by provid-
ing a user-specific interface that reflects personal movement pat-
terns [22, 30, 45].

As we highlighted before, only 20% of studies have focused
on backward movement. We realized that aforementioned ma-
chine/deep learning-based studies did not consider backward move-
ment specifically; thus, despite the importance of backward move-
ment to user experience in VR, there is a lack of understanding on
the detection of backward movement through computational model-
ing and on the feasibility of model application in real VR scenarios.
Although prior research has been considered sequential patterns of
movement in modeling, deep-learning algorithms, designed to learn
such patterns (e.g., Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM)), have not been applied in VR locomotion
research yet. This study deals with modeling the partial gait of WIP.
In particular, we investigate the salient factors (i.e., sensor modality,
learning algorithm, and personalization) to be considered for the
development of a movement detection model.

In summary, our study contributes to the literature in the following
ways. In order to support a realistic VR experience, we (1) develop
models that learn temporal sequences of body motions from the head,
waist, and feet, (2) apply the model to three scenarios that users can
encounter in a real VR environment, (3) measure the effectiveness
of the model, and (4) discuss important points for better developing
and applying models to support VR locomotion.

3 STUDY PROCEDURE

Figure 2 shows the overall research procedure. It is largely composed
of two studies, and in the first study (Study #1), we developed models
for detecting backward movement and examined the performance of
the models. In the second study (Study #2), we applied the developed
model with the best performance to three VR scenarios (i.e., elevator,
library, and bus) in which a user encounters moments to move

backward. Especially, we included two additional conditions for
movement (i.e., standard controller-based and treadmill-based) to
compare the effectiveness and user experience of the model-based
movement.

Our research was approved by the Institutional Review Board
(IRB) at our university. We used the HTC VIVE PRO HMD, and the
study was conducted based on Unity 3D in a Windows 10 system
equipped with Intel Core i7, RAM 16GB, and GeForce RTX 2070.

4 STUDY #1: BACKWARD MOVEMENT DETECTION

4.1 Study procedure
The primary goal of Study #1 was to investigate the possibility of
detecting forward and backward movements. First, we measured the
influence of sensor types and their combinations on the performance
of the machine/deep learning model. This gave us information about
the utilization of the sensors to maximize the model performance
while also considering computation complexity. Second, we in-
vestigated the feasibility of the use of the general model that was
developed from all participants’ data. By comparing the perfor-
mance of the individual models for each participant and the general
model for all participants, we were able to discuss the direction of
model development.

We recruited 20 participants for the user study via a university
bulletin board or word-of-mouth. The participants were invited to
a university laboratory and instructed how to use the VR devices
and what to do in the VR environment. All participants are under-
graduate students (mean age: 24.3, SD: 2.6), and 12 of them have
casual VR experience. Figure 3 illustrates a virtual environment
that we organized for data collection. Participants were asked to
wear a HMD, and a VIVE tracker was attached to the feet and waist.
We asked the participants to hold the VIVE controller and follow
the message (“move forward or backward”) on the screen. If the
participant holds the trigger button of the controller, the participant
is asked to move forward. If the button is released, the participant
is asked to move backward. Through this, we were able to collect
sensor data that corresponded to forward or backward movements.
Participants were asked to walk back and forth for 10 seconds each
as naturally as possible (walking-in-place). This was repeated for six
times, and we collected each movement for 60 seconds (120 seconds
in total) per participant.

4.2 Model feature engineering
We collected position data (three degrees of freedom: ±x,±y,±z) in
the user’s virtual environment from the HMD and the VIVE trackers
on a participant’s waist and feet every 0.1 second, same as the prior
study [26].

WIP in a VR environment is based on the condition in which the
movement is reflected in the virtual space when a user’s legs are
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Figure 4: Architecture of the BiLSTM model that was designed to learn temporal sequence of sensor data.

Figure 5: Additional features used for tracking a user’s forward and
backward movement within an area defined by a virtual circle (C:
center, R: right foot, L: left foot, H: head forward). A user’s position
needs to be readjusted to the center when the user’s actual position
is not on the center.

moving in motion while the user’s location displacement is fixed
and unchanged. However, during WIP, it often happens that a user
physically moves forward or backward. In this work, we placed a
virtual circle with one meter radius (Figure 5), allowing the user
to move within a certain range. However, if the user accidentally
moves out of the circle, he or she receives an alert from the system
to go back to the inside of the circle. We wanted to make sure that
the position change in the real space caused by movement in the
virtual space to be minimized.

Based on these conditions, we extracted features that can aid in
identifying the user’s forward/backward movement even when the
user’s location from the center of the virtual circle changes. One
important point is that we need to readjust a user’s position to the
center when the user’s actual position is not on the center. We thus
considered the components of the vector representing the direction
from the center of the virtual circle to the position where both feet
are located (−→CL: left foot, −→CR: right foot). We used the x and z
coordinates of the user, excluding the y coordinate (height). We
calculated the theta formed by the vector of each foot and the vector
of the head orientation (−→CH) and derived the dot product value. We
added these six features (i.e., −→CLx, −→CLz,

−→CRx, −→CLz,
−→CL · −→CH, and

−→CR ·−→CH) in modeling.

4.3 Model development

For modeling, we used machine learning—Decision Trees (DT) and
Random Forest (RF)—and a deep learning algorithms—Bi-Long

(A) (B) (C)

(D) (E) (F)

Figure 6: Different patterns of movement by participants. Users of (A)
and (B) maintained their position at the center of the circle, those of
(C), (D), (E) deviated from the center, and those of (F) exhibited more
complex movement patterns. This relates to a higher performance
of individual models than one integrated model using all participants
data.

Short-Term Memory models (BiLSTM). We chose the tree-based
machine learning algorithms because they generally show good and
reliable performance in classification tasks. Long short-term mem-
ory (LSTM) is a recurrent neural network (RNN) architecture and
introduces long-term memory into RNN. It mitigates the vanishing
gradient problem, which is where the neural network stops learning
because the updates to the various weights within a given neural
network become smaller [48]. We used LSTM to learn temporal
characteristics of the movement and developed BiLSTM [27] be-
cause we were interested in the forward and backward sequences of
the utilization of sensing data.

For BiLSTM (Figure 4), since we collected samples for
120 seconds at 0.1 second rate, our input tensor was set to
1200×18(features)×10(window size) as a sequence length of 1.0
second. The hidden size and the number of layers were set to 256
and 2, respectively. We set the batch size to 100, the learning rate
to 0.001, and the embed dimension to 18. The model was trained
by 200 epochs to achieve the best performance. We used five-fold
cross validation (i.e., 80% for training and 20% for testing).

4.4 Results

Table 1 summarizes the performance of three models. All models
yielded good performance over 90% F1-score. The BiLSTM model



Decision
Tree

Random
Forest BiLSTM

Average of
individiual models

with each participant
0.92 0.94 0.96

Integrated
model with all participants 0.90 0.93 0.94

Table 1: Performance of three models (F1-score). BiLSTM yielded the
best performance, highlighting the importance of temporal factors in
modeling movement.

showed the highest result (96% F1-score) compared with the ma-
chine learning-based models. Regarding the difference between the
average of the individual models and the integrated model using all
participants’ data, all models yielded higher performance (1-2% in-
crease). We believe that individualized models worked better due to
different patterns of WIP. Figure 6 illustrates such different patterns
of movement (based on the coordinates of x and z), which were
manually clustered by the authors of this paper.

Based on these results, we confirmed a potential of modeling a
user’s forward/backward movement. Our next goal was to evaluate
and validate the effectiveness of the model through its application to
more realistic VR scenarios. This also allowed us to investigate user
experience associated with VR locomotion supported by artificial
intelligence. In the next section, we describe Study #2.

5 STUDY #2: EFFECTIVENESS OF BACKWARD MOVEMENT
DETECTION MODEL

5.1 VR scenarios
VR is a medium that has many elements of a computer game. In
general, representation, interaction, conflict, and safety define com-
puter games [15]. Conflict is a naturally occurring process during
interactions in the game, interfering with a player’s goal achieve-
ment. Conflict is also an intrinsic element of all games, and its form
can be direct or indirect. In this study, we designed a scenario that
requires a moment of backward movement in consideration of the
characteristics of the virtual space and the direct/indirect form of
conflict. Direct conflict in VR includes confronting obstacles, and
indirect conflict includes one’s failure to hold an object due to a
wrong distance from the user and the object (too close or far).

Three VR scenarios contain both direct and indirect conflicts.
Each scenario takes about three minutes and has three events where
backward movement is required. Figure 7 illustrates each scenario,
and Table 2 describes a scenario detail.

5.2 Methods
5.2.1 Independent variables
The purpose of the user study is to compare and analyze the effec-
tiveness of the model for predicting backward movements with other
methods (i.e., controller-based and treadmill-based). These three
conditions were independent variables (Figure 8).

• Control (Standard VR controller-based movement): In this
condition, a participant was given two VR standard controllers.
One controller was to move, and the other controller was to
pick up and hold an object. A participant could move in any
directions using the trackpad of the movement controller.

• Experimental #1 (Treadmill-based movement): We used
Kat Walk mini 7, an off-the-shelf device that supports VR
locomotion. It secures a user’s body while s/he engages in VR
(including walking) and supports friction-free movement in
the form of sweeping, which is the same method supported
by most passive repositioning treadmill-based devices on the
market (e.g., Virtuix Omni, Cyberith Elite). Kat Walk mini
does not officially support backward movement by a natural

7https://www.kat-vr.com/products/kat-walk-mini-vr-treadmill
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Figure 7: Three scenarios used in Study #2. Each scenario has three
moments that need backward movement.

walking form; instead, it can be done by placing one foot in
the center of the treadmill and fixing the other foot back (Other
devices are quite similar to the KAT Walk mini in requiring a
specific condition (e.g., leaning backward) to support backward
movement). To pick up and hold an object, a participant used
one VR standard controller.

• Experimental #2 (Model-based movement): We used the
BiLSTM model that had shown the best performance in Study
#1. To pick up and hold an object, a participant used one VR
standard controller. Participants wore a waist band and shoes
attached with VIVE trackers as used in Study #1.

5.2.2 Dependent variables
We used evaluation metrics in two categories (i.e., system logs and
user experience responses) as dependent variables.

• System logs: We measured the amount of time taken from
the point where the participant received the prompt of moving
backward to the point when s/he actually moved back. We set
the distance to one meter (approximately two steps backward,
equivalent to 39.3 inches). It is clear that the more time it
takes to move back successfully, the higher difficulty (or less
intuitive movement) that the participant would experience.

• User experience: We employed presence and cognitive load
metrics and developed user perceived satisfaction and effective-
ness of movement. The questionnaire for presence consists of
18 questions (Table 3) [57]. Cognitive load refers to the amount
of information that working memory can hold at one time. It is
the individual’s cognitive capacity for learning a task, solving a
problem, etc. The primary idea is that, if the cognitive load ex-
ceeds an individual’s processing capacity, s/he will struggle to
successfully complete the task and his/her user experience will
diminish. We used Students’ Mental Load and Mental Effort
in Biology Education-Questionnaire (StuMMBe-Q) [36]. This
questionnaire considers two aspects (i.e., mental load and men-
tal effort), and each aspect is measured by six questions. The



Scenario Tasks

Elevator
1. Failure to adjust the position while trying to press an elevator button (indirect; step back to see the button)
2. A player tries to get off the elevator on the wrong floor (direct; step back to the elevator again)
3. Several people enter the elevator (direct; step back to give room)

Bus
1. A driver asks a user to step back for a moment (direct; step back and wait for the driver’s okay-sign)
2. A passenger gets off the bus (direct; step back to give room)
3. Failure to adjust the position while trying to press a stop button (indirect; step back to see the button)

Library
1. Suddenly encounter a wall while looking for a book (direct; step back and move on to the direction indicated by the system)
2. While looking at books, someone is coming through (direct; step back to give room)
3. Failure to adjust the position while trying to pick up a book (indirect; step back to see the book)

Table 2: Detailed description of the VR scenarios. Each scenario has three events that need backward movement (Refer to Figure 7).

VR�controller-based��
condition�
(Control)

Treadmill-based��
condition�

(Experimental�#1)

Model-based��
condition�

(Experimental�#2)

Figure 8: Three conditions used in Study #2.

responses to all aforementioned questionnaire items consisted
of a 7-point Likert scale (1: strongly disagree; 7: strongly
agree). The evaluation metrics of presence and cognitive load
have been used in many VR studies [6, 41, 56, 64], showing
their validity. For perceived satisfaction and effectiveness of
movement, we used the following questions: “Moving in VR
was satisfactory” and “Moving in VR was effective.”

5.3 Study procedure
We recruited a total of 36 participants (mean age: 25.1, SD: 3.0)
through a university bulletin board or word-of-mouth. All partici-
pants were university students (24 undergraduates and 12 graduates).
In this study, we employed between-subjects design. The order of
the scenarios was randomly assigned and counterbalanced across
the participants. We randomly assigned 12 participants to each of
the three conditions. The study procedure was as follows.

• The participants provided demographic information and an-
swered questions about their prior VR experience.

• The participants were given verbal explanations on the study
procedure. They were encouraged to ask any questions.

• The participants went through a short tutorial to experience
forward and backward movements.

• (Only for the experimental #2 group) The participants went
through a calibration phase to collect movement data for two
minutes. To build a model, we used the BiLSTM and the same
parameters identified in Study #1.

• The participants used their assigned training condition for
around 10 minutes (each scenario runs about three minutes).
After completing the task, they answered a survey, which con-
sisted of the questions on presence, cognitive load, satisfaction,
and effectiveness, and had a brief interview.

The participants were instructed to raise their hand if they felt
uncomfortable during the experiment (we did not have such a case).
The study was conducted about 22 minutes on average. Upon com-
pletion of the experiment, the participants were compensated $10
for their time.
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Figure 9: Differences in the completion time of backward movement
among three conditions (∗p < 0.05). The model-based condition gen-
erally showed higher results than the controller-based condition but
lower results than the treadmill-based condition. Note that we sepa-
rately measured the differences for each event in each scenario due
to their contextual difference that entails backward movement.

5.4 Results
As a validation check, we did not find a significant influence of
participants’ prior VR experience on the results.

5.4.1 System log analysis
Each scenario has three events that require backward movement;
thus, we calculated the time taken for each event (a total of nine
tasks per participant as described in Table 2). Because the data
were not normally distributed, we used a non-parametric test (i.e.,
Kruskal-Wallis) for comparing the three conditions. For post-hoc
comparisons, we used the Mann-Whitney test.

Figure 9 illustrates the results. Overall, the control condition
(controller-based) showed the lowest mean rank score (i.e., quicker
completion time for backward movement) than other two conditions.
This is a somewhat reasonable result because using the trackpad
on the controller to move is easy and done quickly. When we take
a closer look at the significant differences among the groups, the
number of significant differences between the controller-based and
the treadmill-based conditions was six (two from Elevator, one from
Bus, and three from Library), and that between the controller-based
and the model-based conditions was two (one from Elevator and
one from Library). This indicates that the model-based condition
was more effective than the treadmill-based condition. Given that
we identified two significant differences out of nine between the
controller-based and the model-based conditions, this also indicates
that the completion time of backward movement in the model-based
condition was still reasonably short.

5.4.2 User experience analysis
We measured presence, cognitive load, effectiveness, and satisfaction
for each condition. As the responses were normally distributed, we
used the analysis of variance (ANOVA) and Tukey posthoc tests for
group comparisons.



Factor Question C E1 E2 F(2,33)
1. Ability to control system How well were you able to control the system? 5.8 4.9 5.8 2.05
2. Responsiveness How responsive was the environment to actions that you initiated (or performed)? 6.4 4.8 6.2 9.68∗∗

3. Naturalness of interaction How natural did your interactions with the environment seem? 5.8 4.4 5.8 3.44∗

4. Naturalness of control How natural was the mechanism which controlled movement through the environment? 5.0 4.4 5.5 2.22
5. Sense of object movement How compelling was your sense of objects moving through space? 4.9 4.5 6.2 5.32∗∗

6. Real world consistency How much did your experiences in the virtual environment seem consistent with your real
world experiences?

4.7 4.6 5.8 2.86+

7. Anticipate action results Were you able to anticipate what would happen next in response to the actions that you
performed?

5.4 5.5 5.6 0.05

8. Ability to search How completely were you able to actively survey or search the environment using vision? 5.6 5.1 6.1 2.70+

9. Sense of self movement How compelling was your sense of moving around inside the virtual environment? 5.1 4.9 6.1 2.53+

10. Object examination How closely were you able to examine objects? 4.8 5.1 6.3 11.45∗∗

11. Different viewpoints How well could you examine objects from multiple viewpoints? 5.3 4.9 6.2 5.09∗∗

12. Object manipulation How well could you move or manipulate objects in the virtual environment? 5.1 4.8 6.1 3.52∗

13. Involvement How involved were you in the virtual environment experience? 5.8 5.5 6.8 4.32∗

14. Action outcome delay How much delay did you experience between your actions and expected outcomes? 2.9 3.1 2.7 0.15
15. Subject adjustment How quickly did you adjust to the virtual environment experience? 5.8 5.7 6.5 2.55+

16. Subject proficiency How proficient in moving and interacting with the virtual environment did you feel at the end
of the experience?

5.3 4.8 6.1 3.66∗∗

17. Subject involvement Were you involved in the experimental task to the extent that you lost track of time? 5.8 5.8 6.6 1.97
18. Sense of perspective How effective was the sense of perspective (depth of field)? 5.3 6.1 6.5 4.49∗∗

+p < 0.10,∗ p < 0.05,∗∗ p < 0.01

Table 3: Questions and results of user perceived presence (C: control group, E1: experimental group 1, and E2: experimental group 2). Generally,
the experimental group 2 (the model-based condition) showed the highest results in many factors.
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Figure 10: Difference in user experience results among three condi-
tions. The model-based condition showed significantly higher pres-
ence and satisfaction than the treadmill-based condition (∗p < 0.05).
The cognitive load results were quite identical among three groups.
Although there was no significant difference in effectiveness, the
model-based condition showed the highest result.

Table 3 shows the presence scores. We found significant differ-
ences in “2. responsiveness,” “3. naturalness of interaction,” “5.
sense of object movement,” “10. object examination,” “11. dif-
ferent viewpoints,” “12. object manipulation,” “13. involvement,”
“16. subject proficiency,” “18. sense of perspective” of the factors
among the conditions. For responsiveness, posthoc tests showed
significant differences between C and E1 (p < 0.01) and between
E1 and E2 (p < 0.01). For naturalness of interaction, we also found
significant difference between C and E1 (p < 0.05) and marginally
significant difference between E1 and E2 (p = 0.07). For sense
of object movement, E2 showed significant higher results than C
(p < 0.01) and E1 (p < 0.01). For object examination, E2 showed
significant higher results than C (p < 0.01) and E1 (p < 0.01). For
different viewpoints, E2 showed significant higher results than E1
(p < 0.01). For objective manipulation, significant difference was
found between E1 and E2 (p < 0.01). For involvement, marginally
significant difference was found between C and E2 (p = 0.07) and
significant difference between E1 and E2 (p < 0.05). For subject
proficiency, E2 showed significant higher results than E1 (p < 0.05).

For sense of perspective, E2 showed a significantly higher result
than E1 (p < 0.01).

We also found several marginally significant differences from
ANOVA. E2 showed a marginally higher result than E1 in “1. real
world consistency” (p = 0.07), “8. ability to search” (p = 0.08), “9.
sense of self movement” (p = 0.09), and “15. subject adjustment”
(p = 0.09).

To summarize the results of presence, the model-based condition
showed the best in most factors of presence. Especially, we noted
the similar or higher results of the model-based condition than the
controller-based condition, even though it is much easier and more
flexible to use the controller to move in our experiment. Since the
only difference across the three experimental conditions was the
method for movement, the naturalness of the movement is likely to
be a primary factor that influences the user experience in the VR
scenario, and this was well achieved in the model-based condition.

Figure 10 illustrates the results of presence (the average of 18
factors), cognitive load, satisfaction, and effectiveness. For presence,
similar to what we found in the view of each factor, the model-based
condition showed the highest results among the three conditions
(F(2,33) = 5.01, p < 0.01) and significantly higher results than the
treadmill-based condition (p < 0.01). Regarding cognitive load,
we did not find significant difference among the three conditions.
This indicates that the participants did not experience much mental
load and effort while performing tasks. The model-based method
generated a cognitive load that is similar to other methods, which
shows that the participants found it to be naturalistic and easy to use.
For satisfaction, the model-based condition showed the highest result
(F(2,33) = 3.01, p < 0.05) and significantly higher result than the
treadmill-based condition (p < 0.05). Lastly, for effectiveness, we
did not find any significant differences among the three conditions
but the model-based condition showed the highest result.

5.4.3 Interview analysis
After the survey, we conducted brief interviews, asking the partic-
ipants about their overall feelings about the locomotion in the VR
experiment. For the standard VR controller-based condition, six
participants (50%) mentioned cybersickness (e.g., “Since watching
a VR screen for a while without any movement, I felt a little bit of
sickness.”(P1)) and four participants (30%) indicated less immer-
siveness but easy control (e.g., “Moving in VR was not that difficult



with the controller, but it was less immersive.”(P6)). It indicates that
even if backward movement through the controller’s trackpad was
easy and quick, many participants did not feel engaged because their
feet did not actually move.

For the treadmill-based condition, five (41%) participants men-
tioned cybersickness (e.g., “I felt a little bit of sickness when
my movement on the treadmill was not reflected on the VR
screen.”(P15)), and four (30%) mentioned less immersiveness (e.g.,

“Dragging my feet for movement interrupted immersion, because it is
quite different from actual walking.”(P22)). It appears that many of
the participants did not feel natural to place one foot in the center of
the treadmill and fixing the other foot back to move backward.

Lastly, for the model-based condition, nine participants (75%)
mentioned immersiveness (e.g., “In VR, I grabbed items using a con-
troller and moved by actual walking. These controls are the same as
those in the real world, which made me be more immersive to the VR
content.”(P27)), and four (41%) mentioned less cybersickness (e.g.,

“I have experienced in playing VR with the controllers. Comparing
with my prior experiences, movement during the experiment was
not as dizzy as I had expected.”(P31)). In summary, these results
indicate that the participants’ experience in the VR movement was
quite positive, and compared with other two conditions, it appeared
that the participants did not experience cybersickness.

6 DISCUSSION

The role of locomotion is important in terms of user interactions with
content and experience in VR. In this paper, we designed machine
learning/deep learning-based models that aimed to predict backward
movement using sensor data from a user’s head, waist, and feet in a
walking-in-place environment. We verified the effectiveness of the
model by applying it to three VR scenarios. In this section, we dis-
cuss salient points and issues in model development and application.
We also discuss the direction in which the future motion prediction
model development research and application should proceed.

6.1 Reflection on model development and application
Regarding the model-based condition in Study #2, the model with
the test data generated during the scenario experiment worked quite
well for most participants. However, we experienced some cases
where the performance of the model occasionally dropped (86-88%
F1-score) during the scenario experiment (for two participants). We
used a total of 120 seconds for collecting backward and forward
movement data in Study #1 and applied the same amount of time
during the calibration phase in Study #2. However, 120 seconds
may not be enough for all participants, and some participants might
need a longer time for data collection. Our study results confirmed
that the use of an individual model was more effective than a single,
generalized model (using all participants’ data together). For some
cases where more data use seems necessary, we could consider
grouping users who exhibited similar walking patterns and using the
data from the same group or conduct cluster analysis based on the
existing data to identify salient groups; for example, similar to what
we observed in Figure 6.

We used the basic structure of BiLSTM. Given the sequential char-
acteristics of the step, it may be worth considering the performance
of the model by applying other advanced models, such as Stacked
LSTM or Convolutional LSTM (ConvLSTM). Moreover, the model
will be more personalized when the test data is additionally used for
model retraining. As the amount of data used for training for each
user increases over time, it may take longer to retrain the model. To
mitigate this issue, we could consider applying a weighted model
that prefers recency, or truncating the past data and applying the
most recent data for training. However, our study results indicated
that a model with “reasonable” (not perfect) performance might be
sufficient to support a user’s VR experience. Therefore, balancing
the time of model retraining, data size, model performance, and user

experience seems necessary for the application of the model to VR
to wider populations.

We could also consider other factors for individualized training.
During the calibration phase, we could ask users to WIP at different
speeds (e.g., slow walk, fast walk, light jogging) and then map it
to different “default bucket” speeds in the VR environment. All
detected slow walk, fast walk, and light jogging, would displace the
users in VR at equal predefined pacing speed. With a model that
detects these different types, we can expect a greater application of
the model to many VR scenarios.

6.2 Limitations and future work

Our study has presented insights into VR locomotion. However, it
has some limitations that should be addressed in future research.
First, most of the participants in the user study were college students
in their twenties, and because they were familiar with IT technology,
it may be difficult to generalize the results. It is expected that experi-
ments with people from a wider range of age groups and IT affinity
levels, which will be conducted in the future. In addition, consider-
ing different levels of feeling discomfort when using a VR headset
or being in a VR environment is important to better understand the
application of model-based VR locomotion.

Second, we used three scenarios that require backward movement
that can be encountered in everyday life. However, the scenarios
might appear somewhat simple. VR environments are much more
flexible and have a high degree of freedom compared with the real
world; thus, it seems necessary to consider frequent or prolonged
backward movement as well as omni-directional movement that ap-
pears a lot in first-person shooter (FPS) games and training scenarios.
In addition, there might be a possible bias in participants’ subjective
ratings of user experience due to the less natural way of creating
backward movement on the passive treadmill. In our future work,
we plan to verify the effectiveness by applying the supplemented
model to more diverse scenarios and walking conditions.

Lastly, there are some ambiguities in the interpretations of the
results of the completion time comparison. The comparisons be-
tween the control condition and each experimental condition allowed
only an indirect conclusion that Experimental 2 (our model) is more
effective than Experimental 1 (treadmill). As presented in the results
section, when comparing the two experimental conditions, we saw
two significant differences out of nine. Thus, our interpretation
of the group difference could be partially true, and more rigorous
investigations are needed to verify the effectiveness of our model
compared with off-the-shelf VR locomotion devices. This will be
done in future studies.

7 CONCLUSION

In this paper, we demonstrated the effectiveness and potential of
modeling a user’s forward and backward movement in a VR en-
vironment. Many VR systems still suffer from users’ increased
cognitive load or cyber-sickness due to an absence of reliable sup-
port for or limited control to navigation and movement. As VR
content is expected to be more interactive and users will expect to
have more controllable or flexible experience in a VR environment,
the role of movement that directly pertains to user experience will
be more important. We hope our study findings give useful and
applicable insights to researchers, developers, and practitioners for
VR locomotion.
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[68] A. Zenner and A. Krüger. Drag: on: A virtual reality controller provid-
ing haptic feedback based on drag and weight shift. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems,
pp. 1–12, 2019.

[69] K. Zhu, T. Chen, F. Han, and Y.-S. Wu. Haptwist: creating interac-
tive haptic proxies in virtual reality using low-cost twistable artefacts.
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, pp. 1–13, 2019.


	Introduction
	Related work
	Supporting immersive experience in VR
	Locomotion research in VR
	Learning and predicting movement in VR

	Study procedure
	Study #1: Backward movement detection
	Study procedure
	Model feature engineering
	Model development
	Results

	Study #2: Effectiveness of backward movement detection model
	VR scenarios
	Methods
	Independent variables
	Dependent variables

	Study procedure
	Results
	System log analysis
	User experience analysis
	Interview analysis


	Discussion
	Reflection on model development and application
	Limitations and future work

	Conclusion

